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Let us consider the flow problem of a viscous incompressible fluid be-
tween two infinite discs. The discs, separated from each other by a dis-
tance ho. are rotating. The angular velocity of one disc is a function
of time 0, (0, and that of the other is Wy(t), From the first disc, let
there be fluid injection at a uniform time-dependent velocity vl(t). and
from the second disc, at a velocity ve(t). The fluid was initially at
rest. The solution of this problem in {1] was reduced to nonlinear
partial differential equations which, (as was pointed out in that paper)
can be solved numerically. In the present paper the solution of this
problem is reduced to a system of integral equations which are solved by
the method of successive approximations.

In the presence of axial symmetry and the absence of body forces, the
Navier-Stokes equations in the cylindrical coordinates can be reduced to
the system of nonlinear partial differential equations [1}
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Here Vr, Vé, Vz are radial, tangential and axial components of the
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velocity vector. Taking into account the boundary conditions for Vr* Vé‘
Vs determined by the nonslip condition and the presence of injection,
and the initial conditions for w, v, — absence of the initial velocity —

we obtain the following boundary conditions:
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We seek a solution in the form of a sum w(y, t) = F(y, t) + ¢(y, ).
where F(y, t) satisfies Equation (1) with zero right-hand side and the
boundary conditions (5), while ¢(y, t) is a solution of Equation (2)
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satisfyingz the corresponding homogeneous limiting conditions.

Taking into account the conditions (5), the function F(y, t) is sought
in the form
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We also assume that the function y(y, t) must satisfy the conditions:
B0, 1) = wi (1), w, (0, 1) =0, w(y,0) =0 (10)

Because of these boundary conditions, the unknown functions Y (1) and
W2(t) can be determined from the system of regular Volterra integral

equations
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The function ®(y, t) is a solution of the heat conduction equation

Oyy - Qt = 0, with zero initial conditions and satisfying the boundary
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conditions
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Let us represent the function ®(y, t) in the form
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Then from the boundary conditions for O(y, t) we obtain for the de-
termination of the functions ¢,(¢) and 02(t) the system of regular
Volterra integral equations [2?
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For the determination of ¢(y, t) we will utilize the Green’s function
constructed by Dol idze [2,3.4]

Gy, nt)=Sy,nt)+ely,n¢) (16)
Here
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a=—1, YoM, a=1, y=>p

The function g(y, v, t) 18 a regular solution of Equation (7) with
zero right-hand side, zero initial conditions and satisfying the bound-
ary conditions

£(0,n,t) =g, (0,7, =0, g, nt)=—S(h,y,1)
gy(hrn’“=—sy(hvynt)s t>00 0<"!<h (18)
It can be seen, therefore, that the problem of determining g will

again be reduced to the solution of a system of regular Volterra integral
equations.
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By the usual arguments it is easy to show the validity of the follow-
ing equality [4]
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and, finally, we obtain for w(y, t) the following integro-differentisl
equation
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Let us determine »(y,

t). ¥We represent the solution of the first
equation in (2) as a sum of two functioms

vy, t)= Ay, 1)+ By, 1)

The function A(y, t) satisfies the first equation in (2) with zero

right-hand side, and the boundary conditions (6), while the fumction
B(y, t) is a solution of the equation
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Determination of the function w(y, t) is reduced to the following
integro-differential equations [3]:
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on

n (8) will be written as’
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Thus, the determination of w(y,

t) and w(y, t) is reduced to a system
of integro-differential equations (20) and (21). Taking (20) and (21)
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with a parameter § and differentiating (20) three times and (21) once
under the integral sign, which can be easily justified by (17), we ob-
tain the following system:
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The equalities (20), (23) represent a system of nonlinear integral
equations for determination of the functions w, , while (21), (24)

 J
YY
are a system of nonlinear integral equations for de%ermination of v, vy.

We shall seek these functions in the form of series
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For determination of the terms of the series we obtain the following
recurrence forsulas:
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The convergence of the series is easily proved by the method of
odqvist [5].

It is easy to show that the following inequalities take place: (¥,
H = const)
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For simplicity of presentation we will show the convergence of the
series (25). The proof of convergence of (26) is then easily visualized.
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On the strength of (25) and (28) the majorant of the series (25) is
of the form [3)

C= 2 8C, (Co=M, C, \ =5MHY T ch,,__,)

a==0

It is easy to verify that the equality C = Gy *+ slﬁd(tS)Cz is satis-
fied. In observing the inequality 20!3H54 t< 1, we have
i
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In this case the series (25) converge absolutely and uniformly for
finite t. The absolute and uniform convergence of (26) takes place for
1 e e
O o e (] — 8AM2
¢ =y Vi—smus vy
and since the derived solutions are obtained from (20) and (21) for
§ = 1, then the series (25) and (26) will yield a solution if 20°M ¢ <1

C ==

In order to find the pressure it is necessary to find the functions
w,(t) and w,(y, t) which are determined after solution of the problem
(1) to (8) from the equations

du Ou 8::,(:} _ & dw Bw
m= y:+v’—u’—way % oy —ap YT

These equations are also valid for the discs with a finite radius if
the radius ‘R is large compared to the distance n between the discs. PFor
discs with a finite radius R >> R,. one can find the retarding torques

(1]
PR v v {0, t R v dv(h, ¢
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